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Analytical approximations to conditional distribution functions

By THOMAS J. DICIccIo, MICHAEL A. MARTIN

AND G. ALASTAIR YOUNG

SUMMARY. Conditional inference plays a central role in statistics, but determination of

relevant conditional distributions is often difficult. We develop analytical procedures that

are accurate and easy to apply for approximating conditional distribution functions. For

a continuous random vector X = (X,....., XP), we estimate conditional tail probabilities

pr(Y' < aIY2 = a2 ,..., yk = a k), k < p,

where Y1 = g'(XI,.. .XP) (i = 1,...,k) and g 1,. .. ,9k are smooth functions of X. Previ-

ous approaches have dealt with the cases where the variable whose conditional distribution

is sought is a linear function of means, and where there are p - 1 conditioning variables.

However, in many practical circumstances the statistic of interest is a nonlinear function of

means and it is advantageous to condition on a lower-dimensional ancillary statistic. Our

procedure first involves approximating the marginal density function fyl ,...,y (y,... , yk)

for Y 1 ,... , YA, by an approach of Phillips (1983) and Tierney, Kass and Kadane (1989).

An accurate approximation to the required conditional probability is then obtained by

applying a marginal tail probability approximation of DiCiccio and Martin (1991) to the

conditional density of Y1 given y 2 ,..., y which satisfies

fyly2,...,yk(y' jy 2 = a 2 ,..., yk = a k) oc fy,.... ,yk (y 1 , a2 ,.. ., k).

Our method is illustrated in several examples, including one which uses a saddlepoint

approximation for the density of X, and the method is applied for conditional bootstrap

inference.

Some key words: Ancillary statistic; Conditional bootstrap; Laplace's method; Marginal

density; Saddlepoint approximation; Tail probability approximation.



1. Introduction

Conditional distributions play a key role in many inference problems, largely through

the use of the conditionality principle and notions such as ancillarity. Unfortunately, it

is often difficult or impossible to compute exact conditional distributions, and standard

approximation methods often fail to work or are difficult to adapt to the situation at hand.

For example, Edgeworth expansions can yield negative probability estimates in the tails of

a distribution, and saddlepoint methods based on cumulant generating functions are only

easily applied when the variables of interest are means.

Skovgaard (1987) investigated the use of saddlepoint methods in the case of a bi-

variate mean to develop analytical approximations to the conditional distribution of one

mean given the other. He extended his method to the case of p means, approximating the

conditional distribution of a linear function of the means given a (p - 1)-dimensional linear

function of them. Wang (1991) extended Skovgaard's results further to include the case

of approximating the conditional distribution of a mean given p - 1 nonlinear functions

of the means. Davison and Hinkley (1988) applied Skovgaard's approach in a conditional

bootstrap context. They extended Skovgaard's results to include the conditional distribu-

tion of certain functions of the means given a (p - 1)-dimensional linear function of them,

where the functions in question lead to statistics which are solutions of linear estimating

equations. The techniques of Skovgaard and Wang have several elements in common that

may limit their applicability. First, because they are based on saddlepoint approximations,

their methods require knowledge of the cumulant generating function of the entire random

vector of interest. Second, their technique restricts the variable whose conditional distri-

bution is sought to be a linear function of means, or at least to be a function of means

identified with a linear estimating equation. This restriction can be quite severe in prac-

tice. Finally, and most importantly, the number of conditioning variables is necessarily

p - 1. However, in many cases of practical interest, an ancillary exists that is of lower

dimension than p - 1, and interest centers on distributions conditional on that ancillary.

In this paper, we develop an analytical approximation to conditional tail probabilities
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for a smooth function of a random vector X = (X1,..., XP) given k - 1 other smooth func-

tions of X, where k < p. The vector X is not restricted to a vector of means; we assume

only that its joint density function is of the form cb(x) exp{(x)}. Also, the variable whose

conditional distribution is sought may be a smooth, non-linear function of X, giving our

method considerable generality. Moreover, our method allows the dimension of the condi-

tioning variable to be less than p - 1, so that a lower-dimensional ancillary statistic may

be conditioned on if it exists. Our technique produces accurate approximate conditional

tail probabilities, and is based on applying DiCiccio and Martin's (1991) tail probability

approximation to a marginal density approximation given by Phillips (1983) and Ticrney,

Kass and Kadane (1989), by noting that the required conditional density is proportional to

the marginal density for fixed values of the conditioning variables. A secondary, theoretical

contribution of the paper is to show that the approaches of Phillips (1983) and Tierney,

Kass and Kadane (1989) for developing marginal density approximations are equivalent.

An important feature of our approximation is that it avoids costly numerical integra-

tion. An obvious alternative approach to use of our method is numerical integration of

a renormalized version of the conditional density approximation that arises in developing

our technique. The first obstacle to implementing this approach is that renormalization

requires the computation of a second numerical integral. However, both numerical inte-

gration steps are practically infeasible because each density function evaluation requires a

potentially costly constrained maximization step. In contrast, application of our method

requires only four function evaluations.

Section 2 of the paper describes our theoretical results. In section 3, we discuss

computational aspects of our method and provide a formal algorithm for its use. Examples

of the use of our method are given in Section 4, including an application to the conditional

bootstrap.

2. Conditional Tail Probability Approximation

Consider a continuous random vector X - (X' ... , X P) having probability density
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function of the form

fx(x) = cb(x)exp{e(x)}, x = (x 1. . . . xP),

and let i = (i,... , P) be the point maximizing e(x), and suppose that X- i is Op(n-)

as n -- + oo, where n is sample size. For each fixed x, assume that £(x) and its partial

derivatives are O(n). We are interested in approximating conditional tail probabilities

pr(Y1 < a' I y2 = a2 ,...,yk = ak), k < p,

where a 2 ,...,ak are fixed constants and Y' = g'(X 1,... ,X P ) (i = 1,...,k) for functions

I k 1ig1, ... , g which are assumed to have continuous gradients that do not vanish in an n 2-

neighbourhood of i.

In order to study the conditional distribution of Y1 given y 2 ,..., yk, we first consider

an approximation to the marginal density of yI,..., yk. Two approaches to estimating

this marginal density are given by Phillips (1983) and Tierney, Kass and Kadane (1989).

Both approaches utilize Laplace's method of approximating integrals to avoid the need

for high-dimensional integration, and it is shown here that they yield the same marginal

density approximation; see the Appendix. We will use elements of both approaches to

describe our method, so we now briefly describe each approach.

Phillips (1983) assumes a 1-1 transformation

Y = (Y .. ... Y P ) = 1g , (X I, ... X P ), .. g p (X I ... ,X p )

of X, where the variables of interest are yl,... ,yk, and the functions gk+l,...,gP are

smooth and have non-zero gradients in an n -- neighbourhood of i. Let J{x(y)} denote

the Jacobian of this transformation. Then the probability density function of Y is of the

form

fy(y) = c6(y)expf(y)}, y = (y.,.. .P),

where b(y) = b{x(y)}/det[J{x(y)}j] and 1(y) = £{x(y)}. The marginal density of Y 1 .... yk

is then

fy. Y ( ,..., i b(y)expe(y). dyk+l ... dyP
_o 0
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f-. foob(y)expi(y)}dyk+l...dyP

Let 9 be the value of y maximzing 1(y), and let = (yl,... -,y ) be the value of y

maximizing 1(y) subject to the first k components of y being held fixed at the values

y1,...,yk. Let li(y) = O(y)/,9y', eij(y) = 02e(y)/Oyi9yj (ij = 1,...,p). Applying

Laplace's method to the numerator and denominator of (1), an approximation to the

marginal density of yi,..., yk is

fy...y(yl ... ,yk) (27r)-k/2 detf(P) 2 (2)' ~~ ~~~ det f'()} Q- ex{, M 1()} 60

where SI(y) is the p x p matrix whose (i,j)th element is -Iii(y), and £Q'(y) is the (p -

k) x (p - k) submatrix of Q(y) corresponding to pairs (i,j) where i,j = k + 1,... ,p. An

apparent problem with approximation (2) is that it requires specification of p - k new

functions gk+l,..., gP of X, the choice of which may affect the accuracy of (2).

Tierney, Kass and Kadane (1989) provide a formula for the approximate marginal

density of y,...,yk that does not require specification of gk+l,, ... , gP. To describe

their formula, we first need additional notation. Let i be the value of z maximizing e(x)

subject to the constraints g1(x',... ,xP) = y1 ,*,gk(xl,... ,xp) = yk, and let H(x) be

the Lagrangian for this constrained maximization,

H(x) = e(x) + A.{g'(x) - y'},

where A, = A(yl,..., yk) (a 1,...,k) and the usual summation convention applies

whereby summation is assumed over indices appearing as both a subscript and a su-

perscript. Let ti(x) = ae(x)/ax i, e,,(x) = 02f(e)/axiaxj, Hij(x) = 02H(x)/Ox'Oxz,

gq(x) = Og,(X)/,x i , gq(x) = 8 2g,(x)/8xriaX (i,j = 1,... ,p; a = 1,...,k) denote the

partial derivatives of e, H and g', respectively. Define the p x p matrices A(x) = {-e'i(x)},

the inverse of the matrix whose (i,j)th element is -e,,(x), and A(x) = {-H"j(x)}, the

inverse of the matrix whose (i,j)th element is -Hi(x) (i,3 - 1,... ,p), and the k x k ma-

trix O(x) whose (a,O)th element is -HI(x)gl(f)g (x) (a, = 1,..., k). Then, Tierney,
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Kass and Kadane's approximation to the marginal density of y 1 ,..., yk is

fyt ..... Yk( IY1'''k) ;z (2r)-k/2 detA )t{( 2 bi) e x p t ( i ) - f ( i ) J "  (3)

Proposition 1. Approximations (2) and (3) to the marginal density of y 1 ,...,yk are

equivalent.

Proposition 1 is proved in the Appendix. In particular, it is shown there that

[detf Q(9))] 2l b() r detf AW}~x 2 b( E)
det{'(9)}] b() = IdetA( ) } b(.' (4)

and

- 1) - (5)

Our rationale in what follows is that

fY 1 Y2y.... k(y 1 I y2 = a 2 ,... yk = ak) oc fyi,....y,.(ya 2 ,...,ak),

so that we may write

fYlJY2,...,yk(y1 I = a 2 ,r.. yk = ak) oc b*(yl)exp{f*(yl)}, (6)

for suitably defined functions e* and b*. We apply the DiCiccio and Martin (1991) tail

probability formula to obtain approximations to conditional tail probabilities pr(Y' <

al I y2 = a2 ,...' k = ak). Fix the values of y 2 . .. ,yk in the preceding discussion at

their conditioned values a 2 ,..., k respectively. Then 7 = f(y', a2 ,..., ak) is a function

of y' alone, and is the value of y maximizing f(y) subject to the first k components of y

being fixed at the values yI, a 2 ,... , ak, respectively. Analogously, i = i(y1, a 2,... ,ak) is

a function of y', and is the value of x maximizing £(x) subject to the constraints g' x) =

y1',g 2(x) = a 2,...,g k(x) =ak. Then b*(yl) in (2) is given by

b*(y ) det{ Z(q)} 2 (y _, a , a )

b*(yk)e{\det[ete ,(y{, a2,..., a k ) ], ( ) )
( det[/A{i(yl, a ... " , a )} 2 bf 1(y', a2,... ,a k)}

(det{ A(I))det[O{f (yl, a2,..., ak)}]1 b(l) , (7)
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and t*(yl) is given by

t*(yl) = {(yl,a 2 ...,a )} - 1(9) = f{i(yl,a 2 ,...,a k)- _(i);

see (4) and (5), respectively. DiCiccio and Martin's (1991) tail probability approximation

for densities of the form (6) is

pr(Y < a'Iy2 = a2,.. yk = ak) 4(r) + O(r)1{ + {-e*(2)(y1)J b*(al) }
h r(e <- m=ax""( yl),r =sgn a )r() r(1)(al) b*(91) (8)

where 91 maximizes f.(yl), r = sgn(al - 9')[2{ft*(9)-*(al)}]2, *()(yl) = dt*(yl)/dyl,
*(2)(y)= d2f(yl)/d(yl) 2 denote the first two derivatives of e*(yl), and 4P and € denote

standard normal distribution and density functions, respectively. A simpler approximation

to the required conditional probability is to just use the leading term of (8); that is,

pr(YI < a 1 I[ y2 = a2,. .. ,y k = a') - k(r). (9)

This alternative approximation is much easier to compute than the full approximation

(8), but it is also significantly less accurate in our experience. Typically, the error in

approximation (8) is of order O(n-/ 2 ), while the error in approximation (9) is of order

0(n-12).

We now outline the expression of the various components of tail probability approx-

imation (8) in terms of the original functions b, b, e, and 1. To this end, note that g'

maximizes 1(y) subject to y2,..., yk being fixed at their conditioned values a2,..., ak, and

let t be the value of x maximizing t(x) subject to g2(x) = a 2,...,gk(x) = a. Then

-1 12 kgy = g (F) and ± = i(q 1 ,a ,...,a ). Hence,

r = sgn~a 1 -12 }([( {('.. a)]

Next, observe from (7) that

b*i() det(10a),..., )}]det 2 b (a,...,ak)(
b*( 1 ) - det{f ,(.t)} det [0 {I(a1, . .. , ak)}], (:
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which is readily computed using values of eii and the Lagrange multipliers A,,(a',..., a k )

(a = 1,...,k) obtained in finding i(al,..., ak).

Now, to compute e*(l)(yl), it is convenient to work with the definition of t*(yl)

involving 1. Then,

d*l(l [i [{~(yla2 ... a')
dl

S [iy, a .., k+l(y , ak),... 9(yl, a .. ,ak)1]
_ dt' [ ay 2' a , .,a k J , a 2.,a , ,.

= (y, 1,.. 2'. k)( , s ..,a )

where g(y',...,yk) = 9'l /Oy1 and the index i runs from 1 to p. However, j*(y, a2,. a )

equals 1 for a = 1 and zero for a = 2,...,k. Moreover, i,{ (yI,a 2,... ,a k)} = 0 for

i' = k + 1,...,p since 9(yl,a 2 ,...,ak) maximizes f subject to the first k components of y

being held fixed at the values y', a2 ,... , respectively. Hence,

*()(l)-- 1 f(t l , a, . , ak)}
•

Now, the Lagrangian for maximizing e(y) subject to the first k components of y being held

fixed is r(y) = 1(y) + Aya, where the index a runs from 1 to k. Note that the Lagrange

multipliers Aa(y, a 2 ,..., a k ) (a = 1,..., k) are the same as those for maximizing e(x) sub-

ject to gl(x) = yl,g 2 (x) = a2 ,..., gk(x) = a k . A Lagrange multiplier argument involving

H(y) yields A(yl,a ,...,ak) = -,{(y1,a 2 ,. .. ,a')} (a = 1,...,k). In particular, we

have

t*() ) = -AI(y,a 2 ,... a k). (11)

The second derivative e.( 2)(yl) is harder to compute, and there does not seem to be

a closed form expression for it in general. However, it is readily approximated numerically
using the formula

e*(2(YI ;: {j (yl + b, a2,..., ,ak) -2f{i(y', a',..., ,a k) + t{l(yl - 6, a2, .., ,ak)}

b2

(12)
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for a small value of 6. It is convenient in this instance to work with the definition of f.(y')

involving e(x). Further details concerning computation of (12) are given in Section 3. Tail

probability approximation (8) may then be computed.

An important special case of our approximation (8) occurs when k = p; that is,

when the number of conditioning variables is p - 1. This is the only case considered by

Skovgaard (1987) and Wang (1991). In that case, the marginalization step to approximate

the marginal density of Y 1,... , yk is not required and the function l and its derivatives are

easily specified. Therefore the conditional density fy1Jy 2.... yp(y a2 , ... , YP = aP)

is proportional to b(y, a2 ,...,aP)exp{e(y', a2 ,..., aP)}. Consequently, approximation (8)

assumes the particularly simple form

pr(Y' < a1 11y 2 = a 2 ,..., yp = ap )

[r1 {4-1(9l,a2,...,aP)12 b(a1,...,aP)
5(r + ¢ r t (al,... ,aP) b(91, a2,...,a) (3

where r = sgn(a' -91)[2 {(y',a2 ,..., aP) - .(a,.. , aP)}]4 and 9' maximizes 1(y) subject

to y2 ,..., yP being held fixed at their conditioned values, a2 ,... , aP, respectively.

3. Computational Details

In this section, we outline some computational details for computing (8). Our aim is to

provide a formal algorithm for the method. Assume that the conditioning values a2 ,... a

are specified, and we wish to approximate pr(Y' < a1 i y2 = a 2 ,..., yk = ak) for various

values of a1 .

Step 1: Find i, the value of x which maximizes e(x) subject to the constraints

g'(x) = a1 ,...,gk(x) = akz. Typically, this step involves the solution of a system of

(p+ k) non-linear equations in as many unknowns to obtain i and the Lagrange multipliers

A, (al,... , a k ) , ... , Ak(al,..., ak) needed for later steps. Of course, the system of equations

referred to here is linear in the Ai's, and so a little algebra usually results in the reduction

of the problem to that of solving a system of p nonlinear equations in p unknowns.

Step 2: Find t, the value of x maximizing e(x) subject to g2 (x) = a 2 ,..., gk(x) = ak.

This step typically requires solution of (p+ k- 1) non-linear equations in as many unknowns.
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Step 3: Form r = sgn{a 1 - g1(±)[2{e(±t)- t?()}] , and hence approximation (9) to

the required conditional distribution function.

Step 4: Calculation of the factor b*(a')/b*(91) follows readily from (10). This step

requires calculation of the derivatives ej(x) and gq.(x) (a = 1,..., k). These derivatives

are readily calculated either analytically or numerically.

Step 5: The first derivative e*(1)(ai) is given by -AI(a.,... ,ak) from Step 1.

Step 6: The second derivative t*(2)(91) is calculated numerically using (12). In

order to calculate (12), the quantities i(o1 + 6, a2 ,... ,ak) and i(91 - 6, a 2,... ,ak) are

needed. In the former case, i(91 + 6, a ,... , ak) is that value of x maximizing e(x) subject

to the constraints g'(x) = 1 + 6,g 2(X) = a2,.  gk(X) = ak, and so may be found by

solving the system of equations from Step 1 except with al replaced by 91 + 6. Similarly,

i(P1 - 6, a2 ,..., a k) may be found by solving the same system of equations with a' replaced

by g' - 6. Approximation (8) may then be computed using (10), (11) and (12).

In implementation of the algorithm described above we have used the packages Min-

pack and NAG to solve the required systems of equations.

4. Examples

4.1. Conditional inference for a normal mean when the coefficient of variation is known.

Let W 1,..., W, be a sample from a normal distribution N(y, c 2P 2 ), 11 > 0, with

known coefficient of variation c > 0. The mean M is the parameter of interest. For

simplicity, let c = 1. Let T = W and U = ZL.(W - W) 2 . The statistic Z = g2 (T,U) =

niT/(U + nT2)1 is ancillary; see Hinkley (1977) and Lehmann (1991). Lehmann (1991,

p.549 ) gives the conditional deasity of V = g1 (T, U) = (U + nT 2)4 given Z = z:

fvIz(v I Z = z) = kp-nv'-' exp{- (p-lv - n"z)2}. (14)

In this case, the number of conditioning variables, k, is equal to p - 1, so the simpler

approximation (13) may be used to approximate conditional tail probabilities pr(V < v I

Z = z). Of course, in this instance, tail probabilities can be computed easily through

numerical integration of the exact density (14), so this example serves merely to illustrate
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the accuracy of our method. Suppose the true value of M is 1. Then, the joint density

of T and U is proportional to u(n - 3)/ 2 exp{- n(t - 1)2 - !u}. We choose b(t,u) = 1

and e(t,u) = n(t - 1)2 _u + x(n - 3) logu here, rather than the more obvious choice

b(t,u) = U e(t,u) = - Ln(t - 1)2 - .u, because in the latter case Ot(t,u)/Ou

never vanishes, meaning that (i, fi) falls on the boundary of possible (t, u) values. Now,1 2 n-3)lg 1 - 2 ). _ The
b(v, z) = 2n -v2 and 1(v, z) = zvn2 n - v2 +(n - 3)logv +(n-3)log( ) The

constrained maximizing point V = V(z) of 1(v, z) subject to z being fixed at its conditioned

value may be computed algebraically here, so approximation (13) becomes

(i2±n 1)4  3pr(Y < v IZ = z) 4P(r)+ O(r) 1+ I(zv n - 2 n3 ) j

Ir (zvn2 - v2 + n -3)f,3 J

where r = sgn(v - fy)[2{e(iv,z) - !(v,z)}] and f) = -Lzn2[1 + {1 + 4z- 2 n-'(n - 3)}2].

Table 1 reports approximations pr(V < v I Z = z) when n = 10 and z = 0.75 for

various values of v. In this instance, our approximation is very close to exact values based

on numerical integration of (14). The simple approximation (9) tends to perform poorly.

Wang (1991) considers tail probabilities for V 2 = n- 1 F Wi2 given Z = z. His method,

which is based on a saddlepoint approximation to the joint distribution of several means,

is not valid in our case as it can only be used to find the conditional distribution of a linear

function of means, here the mean of W 2 itself, given (p- 1) smooth functions of the means.

4.2. Saddlepoint approximations and an application to the conditional bootstrap.

Skovgaard (1987) and Wang (1991) consider the special case where X = (X,..., X P )

is a vector of means and the density fx(x) is approximated by a saddlepoint approxi-

mation. In that setting, consider n observations of a p-dimensional random vector W =

(W1 ,..., W.). Denote the cumulant generating function of W by K(T,..., Tp). Then the

usual saddlepoint approximation to the joint density of X = (V..... , Wp) is proportional

to
p

J1x ( xlI... , ) c J4(x,... ,xP)[- exp[n{K(t,..., Tp) - ZTx'},

whe. he saddlepoint (T 1,..., 't,) satisfies

KT, (T,,...,Tp) = x' (i* =1.,p)
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KT, = OK(T 1,... ,Tp)IOT, and = {KT (t,.., tp) is the k x k matrix of second-

order partial derivatives KTT(T1,.. . ,Tp ) = 2K(T,... ,Tp)/OTjTj (z,j = 1,...,p)eval-

uated at t1,..., Tp. General reviews of saddlepoint methods are given by Barndorff-Nielsen

and Cox (1979) and Reid (1988).

Approximation (12) can be used to approximate conditional tail probabilities pr(Y' <

a1 I y2 = a2 ,..., yk = ak) where Y 1 = g 1(X),...,yk = gk(X) are smooth functions of

the means. It is convenient in this instance to take b(xI,..., xP) = Ii(x',...,xP)-i and

e(xl.,x) =n{(T,..., ,)," - -I ix'}. Wang's (1991) method is only valid when

the function g' is linear. Tierney, Kass and Kadane (1989) give an approximate marginal

density formula for yl,..., yk, from which application of (12) is straightforward.

We are particularly interested in applying (12) to estimate tail probabilities for the

conditional bootstrap. Monte Carlo simulation to estimate conditional bootstrap distribu-

tion functions is extremely tedious, requiring careful stratification of bootstrap resamples

according as to whether bootstrap versions of the conditioned variables approximately sat-

isfy the original conditioning or not; see Hinkley and Schechtman (1987) and Davison and

Hinkley (1988). In particular, a difficulty arises in deciding how close resamples need to

come to the original conditioning criteria to be retained in the simulation. However, recent

methods based on saddlepoint approximations have been proposed to approximate boot-

strap distribution functions which avoid the need for resampling; see Davison and Hinkley

(1988), Daniels and Young (1991), and DiCiccio, Martin and Young (1990). Analyti-

cal approximations such as these are particularly important in the conditional bootstrap

context because they avoid the stratification problem discussed above. Davison and Hink-

ley (1988) consider conditional bootstrap inference for the ratio 0 = E(V)/E(U), where

(U1 , V,) (i = 1,..., n) are pairs with common distribution function F. They suggest a

suitable model for studying the conditional distribution of T = V/U given Ui,... U, is

vi = Oui + u~fi, where Ej are independent errors with zero mean and variance a2. For

simplicity, let a = 1. Then Var(V I uj,...,u,) = a 2c where c = The

aim is to approximate the conditional bootstrap distribution of T* = VIU* given the
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bootstrap ancillary A* = (E U*2 )/(Z U) 2, where (Ui*, Vi*) (i = 1,... ,n) is a resample

drawn at random with replacement from (Ui, V) (i = 1,..., n). Davison and Hinkley find

approximations to

pr(V/ U < t A = ai,2 = a2 ) = pr(V* - tU* < 01 T = a,, 2 = a2 ),

where A = n-1 E U* and A = n-1 E U 2, by applying Skovgaard's (1987) method.

They condition on both A and A; reasoning that, since for their data A* is highly cor-

related with T4 and :T2, "redundancy of a conditioning variable is harmless". Note that

Skovgaard's method requires two conditioning variables in this case, because here p = 3

since (XI,X 2 ,X 3 ) = (U*,V*,U' ). However, approximation (12) allows us to approxi-

mate conditional tail probabilities pr(V*/U* < t I A* = a) directly.

Table 2 reports conditional tail probability approximations for V/U-F for the data set

of size 25 reported by Davison and Hinkley (1988, Table 3). We have repeated Davison and

Hinkley's experiment with two conditioning variables 4 and Ai using approximation (13),

and we have also obtained approximations to pr(V/U * < t I A* = a) using (12) which

could not be obtained using their method. In both cases, the joint cumulant generating

function of (ViV*,U 2 )(i=1,...,n) given (Ui, V) (i =1,...,n) is

K(T1 ,T 2 ,T 3 ) = log n-1 exp(T U. + T2 V + T3U )

In the latter case, we consider the conditional distribution of Y1 = g 1 (X1,X 2 , X)

X 2 /XI given Y2 = g2(Xl,X 2,X 3 ) = n-IX3 /(X) 2 . In each case, the derivatives of K

and g' are easily calculated algebraically or numerically and the constrained maximization

steps were carried out using Minpack's hybrd subroutine. In order to obtain the "exact"

probabilities for the first case, resamples from the simulation experiments were stratified

by requiring each bootstrap ancillary to be no more than one quarter of its standard

deviation from its observed data value. This requirement meant that only about 10% of

the bootstrap resamples drawn were actually retained in estimating the exact probability.

In the second case, resamples for which the bootstrap ancillary was no more than one tenth
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of its standard deviation from its observed data value were retained, resulting in a 10%

retention rate again. The results reported in Table 2 are very encouraging. In particular, in

the latter case when there is only one conditioning variable, approximation (12) performs

very well, especially in the upper tail of the distribution. The simpler approximation

(9) fails badly in this case, particularly in the center of the distribution. In the case of

two conditioning variables, approximation (9) and approximation (13) both perform well,

especially in the lower tail.

Appendix

Proof of Proposition 1

First note that since 1(y) = e{x(y)}, 1(y) = x(g) and i = x(9), we have

exp{e(i) - f(i)} = exp[f{i(y)} - t{x( )}] = exp{e(q) - 1(9)}.

Next, observe that

b(g) b{x(9)}det[J{x()}] = b(i) det{J(9)}
b(p) b--bz(g)}det[Jf x(g)}] b(i) detf J(g7)}"

Consequently, to show that (2) and (3) coincide, it remains to show

det{fA(!)} = det{f(g)}det{J(P)}2  (A.1)

det{A(i)}det{E(i)} det{'(9)}det{J(g)} 2 "

Note that since e(x) = 1{y(x)}, it follows that

4,W)= lky )x ) (i = 1,.. ,P),

where the index k runs from 1 to p, and

tij(X) = e1k{y(x)}g,(x)g,(X) + lk{y(x)}gk (z) (i,j = 1,...,p), (A.2)

where the indices k, run from 1 to p. Now, since 1i(i) = 0 and lk() = 0 (i, k = 1, ...

we have

!= (

and hence, inverting and taking determinants on both sides,

det{A(i)} = [det{fl(O)}det{J(0)} 2] - 1 . (A.3)
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Recall that g maximizes 1(y) subject to the first k components of y being fixed. Hence

i,(t9) = 0, for i' = k + 1,... ,p. Consequently, from (A.2) it follows that

= +

= lkl(y)g,(!)g,(i) -

where the index a runs from 1 to k, and A, (a = 1,..., k) are the Lagrange multipliers

for the constrained maximization step to obtain . Note as well that A,, (a = 1,... , k) are

also the Lagrange multipliers for finding i. Thus,

ekl(y)g (x)g,(x) = ,ij(i) + AogP(i) = gii(i).

Matrix inversion on both sides yields

k(l) - g ) )( (A.4)

and hence

[detf= det{fA(i)}det{J(g)} 2 . (A.5)

Equation (A.4) implies that E(1) is the k x k submatrix in the upper left corner of the

inverse of 11(g). Therefore, by the formula for the determinant of a partitioned inverse

(Draper and Smith, 1981, p.127),

det{JI-'(g)} = det{O()}det[{f2'(g)} 1J. (A.6)

Hence, from (A.5) and (A.6) it follows that
det{fA(i)} 1

det{E(i)} -det= f '(g)}detfJ(g)} 2

Combining (A.3) and (A.6), (A.1) obtains, and the proof is complete.
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Table 1

Conditional tail probabilities pr(V < v I Z = 0.75) for Example 4.1, n = 10.

v Exact Approximation (9) Approximation (13)

1.5 0.0000 0.0003 0.0000
2.0 0.0005 0.0036 0.0004
2.5 0.0057 0.0234 0.0048
3.0 0.0331 0.0910 0.0300
3.5 0.1190 0.2394 0.1125
4.0 0.2920 0.4595 0.2828
4.5 0.5264 0.6878 0.5174
5.0 0.7471 0.8575 0.7409
5.5 0.8949 0.9494 0.8918
6.0 0.9664 0.9862 0.9653
6.5 0.9918 0.9971 0.9915
7.0 0.9985 0.9995 0.9984
7.5 0.9998 0.9999 0.9998
8.0 1.0000 1.0000 1.0000
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Table 2

Approximations to conditional probabilities pr('V*/U* < t I A* = 147.9, A2* = 43120)

and pr(IV*/U* < t I A* = 0.07885) for n = 25 pairs of Example 4.2. The conditioned

values chosen are the values of A 1 , A 2 and A from the data.

Two conditioning variables One conditioning variable
t Exactt (9) (13) Exactt (9) (12)
7.8 0.0001 0.0001 0.0001 0.0003 0.0008 0.0004
7.9 0.0002 0.0002 0.0002 0.0006 0.0016 0.0009
8.0 0.0008 0.0007 0.0007 0.0013 0.0033 0.0020
8.1 0.0020 0.0020 0.0020 0.0029 0.0066 0.0042
8.2 0.0050 0.0051 0.0051 0.0061 0.0126 0.0083
8.3 0.0115 0.0118 0.0117 0.0125 0.0231 0.0157
8.4 0.0247 0.0252 0.0249 0.0243 0.0405 0.0289
8.5 0.0488 0.0497 0.0489 0.0450 0.0684 0.0511
8.6 0.0888 0.0905 0.0892 0.0794 0.1108 0.0868
8.7 0.1497 0.1528 0.1506 0.1328 0.1715 0.1411
8.8 0.2352 0.2394 0.2363 0.2107 0.2534 0.2187
8.9 0.3432 0.3492 0.3452 0.3155 0.3565 0.3219
9.0 0.4664 0.4752 0.4709 0.4433 0.4763 0.4456
9.1 0.5948 0.6059 0.6018 0.5835 0.6031 0.5863
9.2 0.7151 0.7276 0.7243 0.7185 0.7241 0.7188
9.3 0.8157 0.8287 0.8266 0.8297 0.8264 0.8298
9.4 0.8920 0.9032 0.9021 0.9089 0.9023 0.9092
9.5 0.9429 0.9514 0.9511 0.9573 0.9513 0.9576
9.6 0.9727 0.9786 0.9786 0.9828 0.9786 0.9827
9.7 0.9883 0.9918 0.9918 0.9936 0.9918 0.9938
9.8 0.9955 0.9973 0.9973 0.9980 0.9972 0.9981
9.9 0.9984 0.9992 0.9992 0.9995 0.9992 0.9995

10.0 0.9995 0.9998 0.9998 0.9999 0.9998 0.9999
10.1 0.9999 1.0000 1.0000 1.0000 0.9999 1.0000
10.2 1.0000 1.0000

t "Exact" probabilities based on 500,000 retained bootstrap resamples.
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However, in many practical circumstances the statistic of interest is a nonlinear function of

means and it is advantageous to condition on a lower-dimensional ancillary statistic. Our

procedure first involves approximating the marginal density function fyi.y* (yl'... , yk)

for y1'..... k, by an approach of Phillips (1983) and Tierney, Kass and Kadane (1989).

An accurate approximation to the required conditional probability is then obtained by

applying a marginal tail probability approximation of DiCiccio and Martin (1991) to the

conditional density of Y' given y2..., yk which satisfies

fyxtIy. ..... Y(y 1Y 2 = a, ..., Yk = ak) oc fy,.y,(y 1 ,a 2 .... ak).

Our method is illustrated in several examples, including one which uses a saddlepoint

approximation for the density of X, and the method is applied for conditional bootstrap

inference.
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